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1 Introduction

Direct gauge mediation models are attractive from a variety of points of view. They are

the most straightforward solution to the SUSY flavor problem of the MSSM. The general

structure of a direct gauge mediation model is that of a supersymmetric quivering moose

with gauge group G×SU(1, 2, 3). There are chiral fields FA
i which transform in irreducible

representations of both groups, possibly including singlets which can couple to the non-

singlets in the cubic superpotential. The fields that are singlets underG, but not SU(1, 2, 3),

are assumed to be precisely the 3 generations plus two Higgs fields of the MSSM. At the

scale ΛG the G gauge interactions become strong and are assumed to produce a meta-stable

SUSY violating state.1

One of the phenomenological virtues of the MSSM is its successful prediction of cou-

pling constant unification. If we wish to preserve this prediction, to one loop order, then the

G-charged chiral fields must lie in complete multiplets of the unified group. Furthermore,

there are strong constraints on the gauge group G, and the additional matter content, from

the requirement that the standard model gauge couplings remain in the perturbative regime

1To ensure this, it may be necessary to introduce quadratic terms in the superpotential by hand [7].

Depending on one’s theoretical orientation, one may view these as arising from retro-fitting [8] or from

Cosmological SUSY Breaking [9].
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all the way up to the GUT scale. As far as we know, the only phenomenologically viable

choice of G which might satisfy these constraints is SU(5), and one is led to the Pentagon

model [15]. Even in the Pentagon model the dynamics which leads to a phenomenologically

viable SUSY violating state is somewhat conjectural. In all other examples that we have

studied, there are dramatic clashes with existing experiments - spontaneous breakdown of

charge or color, or unobserved light states.

Recently, a careful two loop study of the standard model running couplings has

shown [16] that the Pentagon is viable only if the scale Λ5, and the ISS mass terms are

both > 1000 TeV. This is incompatible with the original motivation for the Pentagon

model, in which it was the low energy implementation of Cosmological SUSY Breaking.

For most readers it will be more significant that the lower bound on the SUSY breaking

scale pushes up against the forbidden window of gravitino masses. A conservative reading

of the literature on cosmological gravitino bounds leads one to conclude that m3/2 < 30 eV,

corresponding to a bound on the highest SUSY breaking scale of order
√

6×102 TeV. If we

raise the scale high enough to get to the high side of the forbidden window for gravitino

masses, then we lose the solution to the SUSY flavor problem.

Yet another problem with the Pentagon model surfaced in a recent paper [6]. The

pseudo Nambu-Goldstone boson of spontaneously broken penta-baryon number, gets its

mass from an operator of dimension 7. If the scale associated with this irrelevant operator

is larger than ∼ 1010 GeV then the PNGB is copiously produced in stars and leads to

unobserved stellar cooling.2

Finally, like most gauge mediated models, the Pentagon model does not have a SUSY

WIMP dark matter candidate. One is forced to invoke either a QCD axion, or the scenario

mentioned in the previous footnote.

In this paper we will show that all of these problems can be solved simultaneously if

we replace unification in SU(5) or some larger group, with trinification [2]. We will present

an explicit direct mediation model called The Pyramid Scheme, which realizes these ideas.

However, we note that the idea of resolving the Landau pole problem of direct mediation

with trinification, may be of more general utility.

Trinification and the Pyramid Scheme

In E6, one generation of standard model fermions is embedded in the [27] representation.

E6 has an SU1(3) × SU2(3) × SU3(3) ⋊ Z3 subgroup, under which

[27] = (3, 1, 3̄) ⊕ (3̄, 3, 1) ⊕ (1, 3̄, 3),

with the three groups and representations permuted by the Z3. SU3(3) is identified with

color, while the electro-weak SU(2) is the upper Cartesian subgroup of SU2(3). Weak

hypercharge is a linear combination of the hypercharge generators of the first and second

SU(3) factors. The usual 15 components of the [27] make up a standard model generation,

2It should be noted that if one postulates a scale ∼ 108 − 1010 GeV for the coefficient of the dimension 7

operator, and also a primordial asymmetry in penta-baryon number, then one can get a unified explanation

of the baryon asymmetry of the universe, and the origin of dark matter [5].
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while the Higgs fields Hu,d of the MSSM can be obtained in a variety of ways from [27]

and [2̄7] representations of E6.

The essential idea of trinification, is that, in order to predict gauge coupling unification,

it is sufficient, at one loop, to insist that all extra matter between the weak scale and the

unification scale, fall into complete multiplets of SU(3)3 ⋊Z3, and that there be no strong

breaking of this symmetry by Yukawa couplings. The latter requirement is subsumed under

the further demand that all couplings remain perturbative up to the unification scale, so

that one loop renormalization group formulae are a good approximation.3

Although we have described trinification in terms of embedding in an underlying E6, it

might also be derived in a simple manner from D-brane constructions in Type II string the-

ory, or related geometric engineering models [3]. This notion makes the Pyramid Scheme,

which we now introduce, particularly natural.

In the Pyramid Scheme we extend the quivering moose of trinification by a fourth

SU(3) group, SUP (3). All standard model fields are singlets of the new group, and we add

the new representations

T1 + T̄1 = (3, 1, 1, 3̄) + (3̄, 1, 1, 3),

T2 + T̄2 = (1, 3, 1, 3̄) + (1, 3̄, 1, 3),

T3 + T̄3 = (1, 1, 3, 3̄) + (1, 1, 3̄, 3).

We call these new matter fields, trianons. Note that only the third trianon carries color.

Thus, the one loop running of the gauge couplings will be like that in a vanilla gauge

mediated model with 3 messengers. One loop perturbative coupling unification will be

preserved. The quivering moose of this model has the pyramidal shape of figure 1, which

accounts for the name.

In a D-brane or geometric engineering construction, trinification corresponds to 3 sin-

gular loci (stacks of wrapped D-branes) residing on a set of internal cycles which are

permuted by a Z3 isometry of the compact geometry. We call these the chiral cycles

since the chiral fields result from topological intersections of these cycles. The Pyramid

Scheme introduces an extra stack of branes, wrapped on a cycle with the appropriate (non-

topological) intersection with each of the chiral cycles. The trianon mass terms that we

introduce below correspond to small deformations of this extra cycle, so that it no longer

intersects the chiral cycles.

As in the Pentagon model, we introduce a chiral field S, singlet under all gauge groups,

with superpotential couplings

WS = gµSHuHd +
gT

3
S3 +

3
∑

i=1

yiSTiT̄i,

where the bilinears in the trianon fields are the unique SU(3)4 invariants. The Z3 symmetry

imposes yi = y, independent of i. Strictly speaking, we do not have to impose this much

3Two loop unification in the MSSM works less well than one loop unification, and is subject to un-

known unification scale threshold corrections, so we do not consider two loop unification to be a necessary

desideratum of a good model.
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Figure 1. Quiver Diagram of the Pyramid Scheme. Standard Model Particles are in broken

multiplets running around the base of the pyramid.

symmetry on the Yukawa couplings, if they are sufficiently small, because they affect

gauge coupling running only at two loops. The only inviolable symmetry of this low energy

Lagrangian is the low energy gauge symmetry SU(1, 2, 3) × SUP (3) × ZR.4 For simplicity

however we will assume that the full Pyramid gauge group is broken only by the part

of the Lagrangian containing standard model fields, and by the Intriligator-Seiberg-Shih

(ISS) [7] trianon mass terms. It is certainly worth exploring more complicated models, in

which the gauge symmetry is broken down to the standard model (×SUP (3)), also in the

couplings to S.

The singlet S serves several purposes in the model. Most importantly, the term |∂W
∂S |2

ties SUL(2) × UY (1) breaking to the properties of the meta-stable SUSY violating state

of the strong SUP (3) gauge theory. This predicts tan β ∼ 1 for the Higgs mixing angle.

Secondly, the VEV of S can give rise to the µ term of the MSSM, while FS generates the

Bµ term. We will discuss mechanisms for generating such VEVs below. We note that the

coupling gµ can ameliorate the little hierarchy problem, but that this might interfere with

our desire for a VEV of S.

The rest of this paper is organized as follows. In the next section we find a discrete

R-symmetry of the Pyramid model, which outlaws all dimension four and five B and L

violating couplings, apart from the neutrino seesaw operator. In section 3 we introduce the

ISS mass terms and explore the resulting dynamics of the SUP (3) gauge theory. We work in

the regime where the mass terms for T1,3 are above the SUP (3) confinement scale Λ3, while

that for T2 is close to it. This produces a non-trivial Kähler potential for S, and reduces the

dynamics to the moduli space non-linear σ model for the NF = NC = 3 gauge theory with a

4ZR is the discrete R-symmetry required by CSB. We also use it to forbid unwanted dimension 4 and 5

operators in the MSSM. We will discuss it in section 2, below.
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small mass for the chiral fields. As in the Pentagon model, we assume a meta-stable SUSY

violating state of this system, with VEVs for both the pyrma-baryon and pyrmeson fields

constructed from T2. We argue that the extra terms in the potential for S, which come from

integrating out T1,3 could lead to a non-zero VEV for this field, if FS is non-zero. We also

find that the gaugino and squark spectra are “squeezed” relative to vanilla gauge mediation

models [18], because the colored messengers have a SUSY preserving mass higher than the

SUSY breaking scale. We give rough estimates of superpartner masses in this model.

In section 4 we argue that the pyrma-baryons made from T1,3 could be dark matter, if

they are produced in the late decay of some other particle with a reheat temperature in the

TeV range [1].5 The dark matter particles annihilate predominantly to the pseudo Nambu-

Goldstone boson (PNGB) of the spontaneously broken pyrma-baryon number, which we

call the pyrmion. The constituents of the pyrmion do not carry color, and we estimate its

mass to be a few MeV, so it can decay only to electrons, positrons, photons and neutrinos.

It is possible that this could account for the various dark matter “signals” that have

accumulated over the past few years, along the lines of [12]. The mass of the pyrmion

is also large enough to avoid constraints from stellar cooling [6]. Section 5 is devoted to

conclusions and to many suggestions for further elaboration of this work. In appendix A

we sketch the basis for the revised estimate of the relation between the gravitino mass and

the cosmological constant, which we used in the computations of superpartner masses in

section 3. In appendix B we recall, for completeness, the calculation done in [1] of the

non-thermal relic density of pyrma-baryons and appendix C shows some computations.

Throughout this paper we will use the abbreviations, c.c. for cosmological constant,

SUSY and SUSic for supersymmetry and supersymmetric, CSB for Cosmological SUSY

Breaking, PNGB for pseudo Nambu-Goldstone boson, and LEFT for low energy effective

field theory. We will use the phrases heavy trianons and heavy pyrma-baryons to refer to

states constructed from the fields T1,3.

2 Discrete R-symmetry: the model

At low energies, the model is SUP (3) × SU(1, 2, 3) where the SM gauge group can be seen

as coming from the subgroup SU(3)3 ⋊ Z3 ⊂ E6. In the latter notation, the extra matter

fields are the fields shown in table 1 and the model can be represented by the quiver

diagram shown in figure 1. We want to find an approximate discrete R-symmetry which

is exact in the limit of zero ISS masses. We will in fact look for a UR(1), of which we

imagine only a discrete ZN subgroup is fundamental. A variety of equations below only

have to be satisfied modulo N .

The superpotential terms we would like to have in our model are

W ⊃ STiT̄i, SHuHd, HuQŪ, HdQD̄, HdLĒ, (LHu)2

5They could also have the requisite density as a consequence of a primordial asymmetry in one or more

of the pyrma-baryon numbers. However, in this case there would be no annihilation signals.
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SU1(3) SU2(3) SU3(3) SUP (3)

T1 3 1 1 3̄

T̄1 3̄ 1 1 3

T2 1 3 1 3̄

T̄2 1 3̄ 1 3

T3 1 1 3 3̄

T̄3 1 1 3̄ 3

S 1 1 1 1

Table 1. Extra matter fields with their corresponding standard model charges.

which implies that the R-charges satisfy (we denote each R-charge by the name of the

corresponding field)

Ti + T̄i = 2 − S

Hu = 2 −Hd − S

Ū = Hd + S −Q

D̄ = 2 −Hd −Q

Ē = 2 −Hd − L

plus the extra relation from the neutrino seesaw operator. The (approximate) UR(1)

anomaly conditions are

SUP (3)2UR(1) ⇒ 2 · 3 + 3(T1 + T̄1 + T2 + T̄2 + T3 + T̄3 − 6) = 3(2 − 3S)

SUC(3)2UR(1) ⇒ 2 · 3 + 6(Q− 1) + 3(Ū + D̄ − 2) + 3(T3 + T̄3 − 2) = 0

SUL(2)2UR(1) ⇒ 2 · 2 + (Hu +Hd − 2) + 9(Q− 1) + 3(L− 1)

+3(T2 + T̄2 − 2) = 3(3Q + L) − 4(S + 2)

which might allow for an S3 superpotential term if 3S = 2 mod N .

The dangerous higher-dimensional superpotential and Kähler potential terms can

be combined into seven groups (the neutrino seesaw operator is allowed). Operators in

each group have the same R-charge (once one takes the d2θ for superpotential terms into

account).

G1 = {LLĒ, LQD̄, SLHu} ⇒ L−Hd

G2 = {LHu, QŪĒHd, Ū D̄
∗Ē} ⇒ L−Hd − S

G3 = {Ū ŪD̄} ⇒ 3Q+Hd − S − 2

G4 = {QQQL} ⇒ 3Q+ L− 2

G5 = {QQQHd, QQD̄
∗} ⇒ 3Q+Hd − 2

G6 = {Ū ŪD̄Ē} ⇒ 3Q+ L− 2S − 2

G7 = {LHuHdHu} ⇒ L−Hd − 2S + 2.

– 6 –
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It is possible to forbid all dangerous terms. For example, with N = 5, and S = 4,

3Q + L = 3, L = 3 + Hd, and any choice of Hd one finds that all anomaly conditions

are satisfied and none of the dangerous terms are allowed. Notice moreover that the S3

superpotential term and neutrino seesaw operator are allowed by this choice of R-charges.

Thus one can engineer a superpotential of the form

W =
3

∑

i=1

(mi + yiS)TiT̄i + gµSHuHd +
gT

3
S3

+λuHuQŪ + λdHdQD̄ + λLHdLĒ +
λν

M
(LHu)2 +W0

where only the ISS masses mi and W0 break the R-symmetry. Note that in this equation

λu,d,ν are all matrices in generation space.

3 Breaking R-symmetry and SUSY

We now take into account the dynamical effect of the R-symmetry breaking superpotential

δW = W0 +m1T1T̄1 +m2T2T̄2 +m3T3T̄3

to the low energy effective Lagrangian. Using conventional effective field theory philosophy,

we could ascribe this by the strategy of retro-fitting [8]. That is, we imagine that the R-

symmetry breaking occurs spontaneously, as a consequence of strong dynamics at a scale

ΛR ≫ Λ3 and that the mass terms arise from irrelevant couplings between this sector

and the Pyramid model, and have a size mi ∼ Λ
dR
R

MdR−1 , where dR is the dimension of the

operator appearing in lowest dimension R-conserving coupling of the two sectors. M could

be either the unification scale or the Planck scale, depending on one’s microscopic model

for these couplings. W0 is simply added as a phenomenological fudge to obtain the right

value of the cosmological constant. Apart from the exigencies of phenomenology, there is

no requirement in this way of thinking, that the operators to be added create a SUSY

violating meta-stable state in the low energy theory. Indeed, if one adds operators which

do create such a state, one must be careful to engineer the model so that these are the

dominant effects of the coupling between the two sectors.

The explanation for δW on the basis of the hypothesis of CSB has a very different

flavor. Here, the size of the c.c. and the relation m3/2 = 10KΛ1/4,6 are fundamental

inputs of a microscopic theory of quantum de Sitter space. In order to be consistent with

this theory the low energy effective Lagrangian must have a meta-stable SUSY violating

state.7 Furthermore, Λ is prescribed by the microscopic theory, and the tuning of W0

simply implements this prescription in the LEFT.

6See appendix A for an explanation of the new factor of 10 in this equation. K is for the moment, a

“parameter of order 1”, which cannot be determined from first principles.
7And the Lagrangian must be above the Great Divide [19] so that transitions out of this state can be

viewed as highly improbable Poincaré recurrences of a low entropy state in a finite system, rather than as

an instability.
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The SUP (3) gauge theory is IR free with a small β function. Starting from some

unification scale boundary condition, the coupling decreases slowly in the IR. If there were

no mass terms mi it would flow to a free theory and SUSY would be preserved. This could

not be the low energy implementation of CSB. We must thus introduce mass terms, in order

to produce a dynamical meta-stable SUSY violating state with m3/2 = 10KΛ1/4. In order

to do this using the known and conjectured dynamics of NF ≥ NC SUSY QCD, we take two

masses m1,3 somewhat larger than the third, m2. The gauge coupling then becomes strong

at a confinement scale Λ3, and we assume that m2 is small enough to be treated by chiral

perturbation theory in the NF = NC = 3 moduli space Lagrangian.8 We must further

assume that the unification scale coupling is large enough that m3/Λ3 is not too large.

The latter assumption, and the choice of m3 as one of the large masses, is motivated

by phenomenology. We will see that taking m3 somewhat larger than Λ3 solves one of the

fine tuning problems of vanilla gauge mediation. It suppresses the gluino/chargino mass

ratio. If m3 is too large, this suppression produces an unacceptably light gluino.

We can think of the two heavy trianons as analogs of the charmed quark in QCD, while

the light one is analogous to the strange quark. For purposes of assessing the nature of the

(meta-stable) ground state, we integrate out the heavy trianons, and treat the LEFT by

chiral (moduli space) Lagrangian techniques.

For phenomenological reasons, we will take the two heavy trianons to be T1,3. As a

consequence the light moduli are color singlets and will give rise to gaugino masses only for

the electro-weak gauginos. The gluino mass will be induced by a SUSY breaking mass for

T3, and will be suppressed relative to the chargino masses because this field has a relatively

large supersymmetric mass term. This relieves the tension between the experimental lower

bound on the chargino mass (which might soon reach 160 GeV as a consequence of the

Tevatron trilepton studies [20]), and the large radiative corrections to the Higgs potential

coming from heavy gluinos. There will be a similar suppression of the squark to slepton

mass ratio, relative to the predictions of vanilla gauge mediation.

The moduli space of the SUP (3) gauge theory coupled to T2 consists of a 3×3 complex

matrix pyrmeson field, M , transforming in the [3, 3̄] of the SUL(3) × SUR(3) chiral flavor

group (whose diagonal subgroup contains the action of electro-weak SUL(2) × UY (1)

on the moduli space), and a pair P, P̃ of flavor singlet pyrma-baryon fields which carry

opposite values of a new accidental vector-like U(1) quantum number. These are related

by a constraint

detM − Λ3PP̃ = Λ3
3,

where Λ3 is the complex confinement scale of the theory. The Kähler potential is of the form

K = |Λ3|2h(ek, x, x̃),

8Another possibility is to take m3 > m1,2. The theory then flows close to an interacting superconformal

fixed point and for some range of parameters we may find a calculable meta-stable state. We thank N.

Seiberg for explaining this possibility to us. We leave the exploration of this scenario to future work, but note

that the meta-stable state has the approximate R-symmetry of ISS vacua, and may be phenomenologically

problematic.
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where h is a real permutation invariant function of the variables ek, the eigenvalues of

Y ≡ M†M
|Λ3|2 ,9 and of

x =
|P |2
|Λ3|2

, x̃ =
|P̃ |2
|Λ3|2

.

The superpotential in the chiral LEFT is W = W0 +m2Λ3 trM . The matrix M can be

expanded asM = Z
√

2
3I+Zaλ

a, where the λa are the Gell-Mann matrices. We will look for

SU(3) invariant states, where Za = 0. The constraints on the moduli space then imply that
(

2
3

)3/2
Z3 = Λ3PP̃ + Λ3

3. The superpotential is proportional to Z and the locus PP̃ = 0

is supersymmetric. Any SUSY violating meta-stable state will have a non-zero VEV for

the pyrma-baryon fields, which we will assume charge conjugation symmetric P̃ = P . The

constraint then allows us to write both the Kähler potential and superpotential in terms

of the unconstrained complex field Z. Our previous remarks about the structure of the

Kähler potential imply that it is a function of Z†Z, and that the effective potential is

K−1
Z†Z

|m2Λ3|2.

The existence of a SUSY violating minimum is guaranteed if the positive functionKZ†Z has

a maximum at some finite Z. Geometrically, we have a non-compact, circularly symmetric

2-manifold, and we are asking that the length of a tangent vector attains a maximum

at some particular radius. We have not been able to find arguments for or against the

existence of such a maximum, so we will simply explore the phenomenology of the model,

under the assumption that the maximum exists.

It should be noted that we have made several assumptions about the symmetry of the

ISS mass terms and of the pyrmeson VEV, which are not required by either fundamental

principles or phenomenology. All we are required to preserve in the LEFT is the standard

model gauge group, and enough of the trinification structure to guarantee gauge coupling

unification. Thus, there is actually a rich class of pyramid schemes to explore in search of

a meta-stable state. We only treat the most symmetric of them in this paper.

Given our assumptions, the Pyramid model has two kinds of messengers of gauge

mediation, the moduli of the NF = NC = 3 theory, and the heavy trianons. The scalar

fields Za will get SUSY violating masses of order m2, which, apart from SU(3) symmetry,

are completely unconstrained and unconnected with the masses of their fermionic partners.

Therefore we will obtain one loop masses for the SUL(2) × UY (1) gauginos, of order

mi
1/2 = 3Xi

αi

4π
m2.

The Xi are “order one” numbers, which cannot be calculated without complete knowledge

of the Kähler potential, and the factor of 3 is the dimension of the fundamental representa-

tion of SUP (3). The LEFT of the Z fields has quartic scalar couplings of order (m2/Λ3)
2,

so we have a consistent low energy expansion only for

m2 <
√

4πΛ3.

9Equivalently, a function of wk trY k, for k = 1, 2, 3.
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Combining the estimate above with the gravitino mass formula

m3/2 = Xgm2Λ3/mP = 10KΛ1/4,

gives several competing equalities and inequalities. Here Xg is a constant which must be

calculated from the strongly interacting SUP (3) gauge theory, whileK is a constant of order

1, which must be calculated from the as yet incomplete quantum theory of de Sitter space.

Plausible model independent extensions of the Tevatron trilepton analysis might even-

tually bound the charged gaugino mass term from below by 160 GeV, which requires

19.7 < X2
m2

TeV
.

To get an idea of how these bounds work, assume that m2 = 1.7Λ3 so that the moduli

space Lagrangian is fairly strongly coupled, with a “fine structure constant” of order 1/4.

Then m2 = 14.9
√

K/Xg TeV and we must have X2 > 1.32
√

Xg/K in order to satisfy

the chargino mass bound. Setting the square root to
√

3 we obtain m2 = 8.6 TeV and

Λ3 = 5.1 TeV.

The heavy trianons, T1,3 will also have SUSY violating masses, because of their SUP (3)

couplings to the low energy theory. In particular, since T3 carries color, we will get squark

and gluino masses. In the limit where the SUSic masses of the heavy trianons are ≫ Λ3,

we could calculate the resulting gluino masses by integrating the heavy trianons out to

create effective couplings of the form e.g.
∫

d2θ (W (3)
α )2f(P/m3, P̃ /m3,M/m3).

The F-terms of the light fields would then generate small gluino masses. Symmetries

imply that the leading operators are fairly high-dimensional. However, there is no reason

to suppose that m1,3 ≫ Λ3. For example, in ordinary QCD, an hypothetical quark with

mass of order the rho meson mass, would not be treated by chiral perturbation theory,

but neither would it make sense to estimate its effects via the operator product expansion.

Thus, we predict a gluino/chargino mass ratio which is definitely smaller than the vanilla

gauge mediation result α3/α2, and depends sensitively on m3/
√
m2Λ3 as that variable

becomes large. There will be a similar suppression of the squark to slepton mass ratios. A

factor of 2 in m3/m2 could easily bring the gluino and squark mass predictions down to

the range where they are consistent with experimental lower bounds but do not give large

contributions to the Higgs potential. The mass m1 is not constrained by this analysis.

Our model satisfies the general constraints of Meade et al. [21] and so the SUSY

spectrum will satisfy the sum rules and positivity constraints in that paper, with one

possible exception. If, as we hope, the VEV of S turns out to be non-zero, then the Higgs

field F terms are non-zero, and these produce extra contributions to squark and slepton

masses, whose origin is not gauge mediation. We believe that these are probably negligible,

except for the top squarks, because of small Yukawa couplings.

We should also note that if we try to estimate the spectrum by working with the moduli

space Lagrangian, we find logarithmic divergences.10 This violates the rules of [21] because

10We thank J.L. Jones for pointing out these logarithms to us.
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the moduli space Lagrangian is not renormalizable. At very high energies, the moduli

space Lagrangian fails to be a good description and the rules of [21] are satisfied. Although

none of the order one predictions of the moduli space approach are reliable, because there

are corrections of the same order coming from energies around Λ3 and above [21],11 we

believe that this calculation indicates an enhancement factor in the sfermion/gaugino mass

ratios of the form ln(CΛ3/m2). Our phenomenological estimates do not indicate a large

ratio between Λ3 and m2, but we don’t know the value of C. If there is such a logarithmic

enhancement, it would help to clarify one of the key phenomenological issues of this model.

General gauge mediation estimates suggest that the NLSP in the Pyramid Scheme is either

the bino or the right handed slepton. These two particles have very different discovery

signals, so it is important to decide which of the two is lighter. If the log enhancement is

there, the bino will be the NLSP, which would imply that LHC will see events with hardX+

l+l−γγ, plus missing transverse energy. The origin of these events is the decay of a slepton

to the bino and a hard lepton, followed by bino decay to a photon and a longitudinally

polarized gravitino. Depending on the structure of the SUSY cascade, we will have other

particles, denoted by X in the final state. At LHC strong production cross sections for

sparticles dominate, so we might expect X to include at least a dijet. If the cascade passes

through the relatively light chargino then there will be W bosons in X, coming from the

decay of the chargino into W plus neutralino. The leptons might not even be hard. So the

general characterization of final states for a bino NLSP is X plus two hard photons plus

missing transverse energy, where X depends on the nature of the SUSY cascade.

The ratio m1
1/2/m

2
1/2 is given by

m1
1/2

m2
1/2

=
X1α1

X2α2
= 0.5

X1

X2
.

It’s clear that we can only predict these masses up to a factor of a few. Unfortunately,

the unknown strong interaction factors might well affect the phenomenological signals

of our model.

The ratio of the right handed slepton mass to that of the bino is f =

Y ln1/2(
√

4πm2/Λ3). Y is another unknown strong interaction factor, and we have used

the usual naive dimensional analysis estimate of the cutoff for the moduli space LEFT. If

we take Y =
√

3 and m2 = 1.7Λ3, then f = 2.3, while for Y = 1 and m2 = Λ3 we have

f = 1.12. It seems likely that the bino will be the NLSP in the Pyramid model. For a

50 GeV bino we need f & 2 in order to satisfy the experimental bound on the right handed

slepton mass.

4 The Higgs sector and SUL(2) × UY (1) breaking

The Higgs sector of our model consists of the two doublets Hu,d and the singlet S. The

doublets are remnants of some sort of multiplet of the unified group, while the singlet might

11We thank N. Seiberg for explaining this to us.
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also be such a remnant, or a singlet under SU(3)3. These low energy Higgs fields are the

field content of the NMSSM.

In the approximation that the two heavy trianon masses are ≫ Λ3, integrating out

the trianons and SUP (3) gauge bosons leads to two distinct contributions to the effective

action for the Higgs sector of the NMSSM. The heavy trianon couplings to S give us a

non-trivial effective potential for S. In the Coleman-Weinberg (CW) approximation it has

the form

∑

i=1,3

|mi
F |4f(ui).

Here mi
F = mi + yiS and

ui ≡
|FS |2
|mi

F |4
.

This expression is valid if the yi are perturbative and ui < 1. We have

f(u) = au−
∞
∑

n=0

un+2

(n+ 1)(n + 2)(2n + 3)
.

The linear term comes from the logarithmically divergent one loop wave function renor-

malization for S. The rest of the potential is a negative, monotonically decreasing convex

function of ui, which becomes complex at ui = 1. This change of behavior represents the

breakdown of effective field theory when the masses of scalar components of the heavy

trianon fields become smaller than other scales in the theory, like Λ3 and m2. Calculation

of the potential in this regime is more complicated. Note that when FS 6= 0, the CW

potential monotonically decreases as mi
F are lowered. Thus, these contributions tend to

make the S VEV non-zero when FS 6= 0. This tendency competes against the contributions

to the potential from Higgs F-terms, which are proportional to |gµ|2.
It is important to remark that the one loop contribution from integrating out heavy

trianons, could compete with tree level contribution to the potential for S. The theory

contains multiple Yukawa couplings and the tree level contributions to the S potential

depend on its self coupling, and its couplings to Hu,d and T2. The CW potential depends

on the couplings to the heavy trianons. However, as we will note below, the experimental

constraints on the gluino mass, probably force us to choose a value for m3 at which this

one loop calculation of the potential for S is inadequate, and the non-perturbative effects

of the SUP (3) gauge theory must be taken into account.

The second important contribution to the Higgs potential is the non-zero pyrmeson

VEV (T2T̄2)
i
j ∼ Λ3Zδ

i
j. The resulting Higgs potential, including standard model D-terms
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has an SUL(2) × UY (1) breaking minimum12

gµHuHd =
√

6y2Λ3Z,

tan β = 1,

and

S = FS = 0.

This minimum breaks SUSY and R-symmetry because of the VEVs of Z and FZ . Given

our estimate Λ3 ∼ 5 TeV, we need y2

gµ
∼ 0.01, a perfectly reasonable value for a Yukawa

coupling ratio. We assume that all Yukawa hierarchies in the model are explained in

terms of unification scale physics, a point of view motivated by the strict bounds on flavor

changing processes. Note that BOTH couplings could be much smaller than y1,3, though we

probably want a fairly substantial value for gµ, to ameliorate the little hierarchy problem.

The fact that tanβ = 1 was explained in previous papers on the Pentagon model. When

〈Z〉 6= 0 and S = 0 the potential favors a non-zero value forHuHd, leaving electromagnetism

unbroken. The electroweak D-terms then favor |Hu| = |Hd|. The problem with this vacuum

state is that it implies µ = Bµ = 0, which is not viable phenomenologically.

When we include quantum corrections to the potential from loops of high scale SUP (3)

gauge bosons, we obtain couplings between S and Z. We have not calculated these, but if

they have the effect of forcing FS 6= 0, due to a coupling to FZ , then the VEV of S is likely

to shift as well, since the CW potential favors non-zero VEV if FS 6= 0. Thus it is at least

plausible that we obtain MSSM µ and Bµ terms of the right order of magnitude.

The lower bound on the gluino mass implies that the approximation m3 ≫ Λ3 is

unlikely to be valid. Rather, it is likely thatm3 should be thought of as the moral equivalent

of a quark mass of order 800 MeV in QCD: too large to be treated by chiral perturbation

theory, but too small to integrate out above the confinement scale. In other words, the

CW approximation we discussed above is probably inadequate, if the model is to produce

an acceptably large gluino mass. The generation of effective µ and Bµ terms is thus mixed

up with the strong SUP (3) gauge dynamics. We consider this to be the single most serious

phenomenological deficiency of our model.

To summarize: we have given plausibility arguments that, in an appropriate range of

the parametersmi, the Pyramid Scheme has a SUSY violating, R-symmetry violating meta-

stable minimum with a non-zero value for S. It can give rise to a reasonable supersymmetric

phenomenology, but detailed calculation of the superpartner spectrum is not possible at

this juncture, though it seems likely that a neutralino is the NLSP.

12There is also an SU(2) × U(1) preserving minimum with S 6= 0 and FS = 0. SUSY is still broken

because FZ 6= 0. In a theory with gravity there is no way for the flat space field theory model to “choose”

which of these is the “right” vacuum. We can tune the c.c. to be near zero near any minimum of the

potential. The resulting dS space never decays into a state resembling the flat space vacua near other

points. It makes Poincaré recurrence transitions to states resembling the dS spaces at higher minima of the

potential, and transitions to Big Crunch space-times with negative c.c.. The interpretation of the latter

depends on details of the potential. See the subsection on tunneling in this section, and the references cited

there. Our attitude is that we choose the SUSY breaking SU(2)×U(1) breaking state, because it resembles

our world, and because it may obey the rules following from the hypothetical theory of stable dS space.
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We end this section with a discussion of the tuning of parameters in our model, and its

interpretation. Although we do not have a precise calculation of superpartner masses, it

seems possible that the Pyramid Scheme does not suffer from a little hierarchy problem. It

incorporates the NMSSM and the Yukawa coupling gµSHuHd can evade the usual bounds

on the lightest Higgs mass, even for tanβ ∼ 1. We have presented a mechanism that might

generate a VEV for S, and thus an effective µ term. The F-terms of both S and the light

pyrmeson can provide a Bµ term of the requisite order of magnitude.

Our required pattern of two trianon masses slightly above Λ3, with the third in the

range of validity of chiral perturbation theory may seem artificial, but in the CSB interpre-

tation of the Pyramid Scheme it is in fact required in order to reproduce the meta-stable

state implied by the underlying (but still partly hypothetical) quantum theory of dS space.

Perhaps retro-fitters of the Pyramid Scheme would be more hard pressed to justify pre-

cisely this pattern of masses, but it is surely no more bizarre than the actual pattern of

quark and lepton masses in the standard model. The closeness of m1,3 to Λ3 suggests that

the value of the SUP (3) coupling at the unification scale is fairly large. The NF = 9,

NC = 3 beta function is relatively small and positive. This leads to a slow decrease of the

coupling as the scale is lowered to that of the heavy trianon masses, m1,3. At that point,

asymptotic freedom kicks in, with a relatively large beta function and effective coupling,

and we quickly reach the non-perturbative regime of the NF = NC = 3 theory. We have

not carried out detailed calculations to see if this explanation of the phenomenologically

required coincidence of scales is quantitatively reasonable.

4.1 Tunneling to the “SUSY minimum”

Finally we note that, as a flat space field theory, the Pyramid Scheme certainly has super-

symmetric vacuum states. In a theory with gravity, given our instructions to tune W0 so

that the cosmological constant in the meta-stable state is almost zero, these states could

at best correspond to AdS theories of quantum gravity (superconformal 2 + 1 dimensional

field theories) with cosmological constant of order −|m2Λ3|2. They have nothing to do

with the evolution of our meta-stable state, and belong to a different quantum theory of

gravity, with a different Hamiltonian, if they exist at all. In a theory including gravity, it

never makes sense to think about tunneling to the supersymmetric vacuum state of a flat

space quantum field theory, from a “meta-stable” de Sitter space.

As shown long ago by Coleman and de Luccia, the actual “decay” of the “meta-stable”

de Sitter state proceeds to a Big Crunch space-time in which the low energy effective

description breaks down. Two features of this breakdown are worthy of note. First of all,

high energy degrees of freedom of the field theory are excited. In particular, even in the

moduli space approximation (which is not valid in the Crunching region), the fields do

not remain in the vicinity of the negative c.c. minimum, but instead explore the entire

potential, as the Big Crunch singularity is approached. This means that no low energy

effective field theory description of the endpoint of this tunneling process is valid. Our only

clue to the nature of the transition, comes from the covariant entropy bound, a conjectured

property of any consistent quantum theory of gravity. This bound restricts the entropy
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observable by any observer in the crunching region to be less than ∼ M2
P

m2Λ3
. It is hard to

understand how such a low entropy system could represent the fate of the entire universe.

In [19] it was shown that the space of potentials exhibiting “de Sitter decay” is divided

into two classes. In the first class, called above the Great Divide, the decay probability

behaves like e−π(RMP )2 for large de Sitter radius. These transitions look more like Poincaré

recurrences, temporary sojourns in low entropy states of a finite system, than like true

decays. This is consistent with the hypothesis of Fischler and one of the present authors

(TB) that a stable dS space has a finite number of states. It is also consistent with the low

entropy implied for the crunching region by the covariant entropy bound. Thus, within a

class of potentials for a meta-stable dS minimum in field theory, the semi-classical dynamics

is consistent with the idea of a stable quantum dS space with a finite number of states.

The instability of the semi-classical theory is viewed as a Poincaré recurrence.

In the second class of potentials, below the Great Divide, no such interpretation is

possible, and a low energy theory in this class could not be interpreted as the LEFT of

a finite theory of stable dS space. From the CSB point of view, the parameters of the

Pyramid Scheme must be chosen to lie in the regime above the Great Divide, where this

analysis is applicable. If this is possible, there would be no phenomenological consequences

of the SUSY vacuum in the flat space effective field theory. The question of whether there

are values of parameters for which the Pyramid Scheme is above the Great Divide will be

studied in future work.

For those who are interested in viewing the Pyramid Scheme as a model divorced from

the ideas of CSB, we can present an estimate of the flat space tunneling amplitude between

the meta-stable SUSY violating state and the SUSY vacuum. If the model is below the Great

Divide, this is probably a reasonable estimate of the actual tunneling amplitude including

gravity, although the classical evolution after tunneling is dominated, at long enough times

in the future, by high energy gravitational effects. We recall that we chose the “quartic fine

structure constant”, α4, of the moduli space Lagrangian to be approximately 1
4 . Both the

SUSic vacuum with vanishing pyrma-baryon fields, and the meta-stable state, are singlets

under the SU(3) × SU(3) symmetry of the pyrmeson Lagrangian, so we can assume that

the instanton is a singlet everywhere along its trajectory. The action is therefore

S = 3
π

α4
k,

where the factor of 3 comes from the trace. There are no other small parameters, so we

expect k ∼ 1. The tunneling probability per unit volume per unit time is thus

P ∼ e−12πkΛ4
3 ∼ e−12πkΛ4

3.

If Λ3 ∼ 5TeV and k & 12, there is low probability of a tunneling event in our horizon

volume, since the beginning of the universe. It is not implausible that such a numerical

factor could emerge from a precise calculation of the instanton action, but the result is not

comforting. We are more concerned about the fact that this tunneling time is much more

rapid than the recurrence time. Unless we can show that gravitational effects significantly

modify the tunneling calculation, the Pyramid Scheme will not fit into the framework of

CSB. We hope to return to this problem in a future paper.
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5 A Pyramid Scheme for cosmology

Models of gauge mediated SUSY breaking do not have a standard WIMP dark matter

candidate. Even in the absence of R-parity violation, the LSP is the gravitino, which is

very light. When one imposes the further restriction of consistency with CSB, the gravitino

mass is about 10−2 eV. In [1], Banks and collaborators proposed that baryon-like states of

the hidden sector could play the role of cold dark matter. For reheat temperatures above

the confinement scale of the hidden sector, this was only possible if there was a primordial

asymmetry in the hidden sector baryon density.

The discovery of the ISS [7] meta-stable vacua did not fit in with this idea, because in

these states SUSY breaking is correlated with spontaneous breakdown of the hidden sector

baryon number.13 In [5], with another set of collaborators, Banks proposed that the PNGB

of the spontaneously broken hidden sector baryon number could be the dark matter. This

was only possible if there was a primordial asymmetry in this quantum number. Such

an asymmetry would automatically generate an ordinary baryon asymmetry, through the

mechanism of spontaneous baryogenesis [10], because of the effective coupling of the hidden

sector and ordinary baryon number currents, due to gluon exchange. If one bounds the

hidden sector asymmetry by insisting that the ordinary baryon asymmetry is no bigger

than what is observed, then the dark matter density is also bounded, though the bound

is model dependent, and depends on the scale at which hidden sector baryon number is

broken. In the Pentagon model, one had to assume the scale associated with the leading

penta-baryon number violating operator was between 108 − 1010 GeV, in order to explain

the observed dark matter density.

A related astrophysical issue with the PNGB was pointed out in [6]. Rather general

arguments show that the effective Yukawa coupling of the PNGB to electrons, violates

bounds coming from stellar cooling rates. To avoid this, one must raise the mass of the

PNGB to about an MeV, so that it cannot be produced in ordinary stars. In the Pentagon

model this again required the scale associated with the leading symmetry violating operator

to be in the 108 − 1010 GeV range.

The Pyramid Scheme throws a new light on all of these questions. It has three acciden-

tal baryon number like symmetries, corresponding to the three types of trianon. Call the

corresponding conserved charges Bi. The dynamics of SUP (3) spontaneously breaks B2,

but the other two are preserved. The lightest particles carrying B1,3 are standard model

singlets, and thus potential dark matter candidates. According to [1] there is a small

window of low reheat temperatures, below the confinement scale of SUP (3) in which non-

thermal production of these particles could account for the observed dark matter density.14

Alternatively, a primordial asymmetry in any of these quantum numbers could be invoked

to explain dark matter in a cosmological model with high reheat temperature. One would

have to correlate this with the ordinary baryon asymmetry, as in [5], a constraint which was

missed in [1]. Whether or not there is a PNGB, a primordial asymmetry in some quantum

13This correlation persists for the NF = NC models, which might have vacua breaking the discrete

R-symmetry of the ISS states.
14We recapitulate this analysis in appendix B.
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number implies a cosmological expectation value for the associated charge density. The Bi

currents are all coupled to the ordinary baryon number current via exchange of standard

model gauge bosons, and, in combination with electro-weak baryon number violation, the

asymmetries in pyrma-baryon numbers can drive spontaneous baryogenesis.

The Pyramid Scheme thus provides us with a wealth of possibilities for explaining

both the dark matter in the universe and the asymmetry in ordinary baryon number. In

this paper we will only explore one of these directions. We assume that only negligible

primordial asymmetries in any of these quantum numbers were generated in the very early

universe, and assume a low reheat temperature, so that particles carrying B1 and/or B3,

can be the dark matter.

These particles have QCD like strong interactions, with confinement scale Λ3. Their

annihilation cross section is energy independent and of order Λ−2
3 . Probably the best model

for their cosmological behavior is the soliton picture of [11]. By analogy with baryon anti-

baryon annihilation in QCD, and more generally with soliton anti-soliton annihilation,

we expect the typical final state of the annihilation process to be a state of pyrmions (the

PNGB of spontaneously broken B2) with high multiplicity. This is quite interesting, because

the pyrmions are very light (we will estimate their mass below, in the MeV range), and

their constituents do not carry color. As a consequence, the pyrmion decay into standard

model particles will primarily produce electron positron pairs, photons and neutrinos.

One is tempted to try to associate the behavior of our hypothetical dark matter

candidate, with some of the ambiguous signals for dark matter that have accumulated in

recent years [4]. In [12] it was emphasized that this data can only be interpreted in terms

of a dark matter candidate which decays primarily to leptons, and the authors constructed

an ingenious set of models to implement this constraint. Our suggestion is, quite frankly,

modeled on theirs, but fits more organically into the framework of gauge mediated SUSY

breaking. We will only sketch the outlines of it here, since much more work is needed

to see whether it is viable. The Pyramid model in fact predicts a zero temperature cross

section for dark matter annihilation which is just what is needed to explain the ATIC,

PAMELA and PPB-BETS data. The dimensional analysis/soliton estimate is an energy

independent cross section

σ0 =
A

Λ2
3

.

Recall that Λ3 was constrained strongly by the twin requirements of an experimentally

acceptable chargino mass and a gravitino mass obeying the CSB formula. A typical value

obeying the bounds was Λ3 ∼ 5 TeV.

The interpretation of the ATIC, PAMELA, PPB-BETS and WMAP haze data in terms

of dark matter annihilation requires a low energy cross section

σexp
0 ∼ 0.1 (TeV)−2.

Thus A ∼ 2.5 would seem to fit the data. We will see below that the multiplicity of

e+e− pairs per dark matter annihilation is likely to be large, so that an even smaller cross

section for dark matter annihilation is actually called for. This would require A ∼ 0.2 for

the multiplicity we estimate below. Our point here is not to make precise fits, but rather
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to show that the Pyramid Scheme is in the right ballpark to explain the observational

evidence for a lepton anti-lepton excess in the galaxy.

Fans of thermal WIMP dark matter will be curious to understand how such a large cross

section could be compatible with the correct relic dark matter density. For completeness,

we recapitulate the non-thermal dark matter production calculation of [1] in the appendix.

The answer depends on the last reheat temperature of the universe, which must satisfy

Λ3 > TRH > 0.1mB.

It is easy to imagine getting such a low reheat temperature from the decay of a relic scalar,

like the supersymmetric partner of the QCD axion [13].

With a low reheat temperature, we must look for a method of creating the baryon

asymmetry of the universe which is efficient at low energy. Affleck-Dine baryogenesis is

always an option [23], but the Pyramid model has the possibility of creating the asym-

metry via spontaneous baryogenesis [10] at the electroweak phase transition [5]. That is,

a primordial asymmetry in any of the pyrma-baryon numbers acts, because of couplings

α2
3J

PB
µ Bµ/Λ2

3 induced by gluon exchange, as a chemical potential for ordinary baryon num-

ber. This biases electro-weak baryon number violation, which is in equilibrium above the

electro-weak phase transition. The asymmetry is frozen in at T ∼ 100 GeV ≪ TRH.

In addition to this, the most suggestive feature in the data is the cut-off on the electron-

positron spectrum seen by the ATIC and PPB-BETS detectors [24]. In [12] this was

interpreted as showing us the mass of the dark matter particle, and gave rise to an estimate

∼ 600 − 800 GeV. Our dark matter candidate is 40 − 60 times as heavy.

Our proposed explanation for this discrepancy, centers around the strong SUP (3) inter-

actions of our dark matter candidate, and the existence of the pyrmion PNGB. Proton anti-

proton annihilation at rest, which should be a reasonable analog of heavy pyrma-baryon

annihilation in the contemporary universe, produces final states consisting predominantly

of pions. The mean number of pions is 5, with variance 1. Correspondingly, the single pion

inclusive momentum distribution is peaked at 0.2 GeV, roughly 1/5 of the proton mass.

The experimental peak is pronounced, but reasonably broad. The distribution has dropped

by a factor of 10 at 0.8 GeV. Lu and Amado [14] have reproduced many of the features of

the annihilation data in terms of a soliton model, in which the pp̄ initial state is modeled

as a zero baryon number lump of pion field in a Skyrme-like model. Their model gives a

peak that is somewhat more narrow than the data.

In a soliton model, the initial state of light mesons after heavy pyrma-baryon annihila-

tion will be a coherent state of the field. The probability of havingN particles in such a state

is proportional to the square of the average field strength and the variance is of order
√
N .

In a soliton model of a QCD like theory, the average momentum per particle is strongly sup-

pressed for |p| > Λ3, but would otherwise be randomly distributed. Our dark matter candi-

date would be a pyrma-baryon consisting of three heavy trianons and would have a mass of

order 3m1,3. Given our estimates this is roughly 30− 40 TeV. In the Pyramid Scheme, the

final state will consist primarily of pyrmions, which are effectively massless and will have a

typical momentum < Λ3 ∼ 5 TeV. Some of these will be primaries and the rest secondary
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products of the decays of heavier pyrmesons. Thus, we may expect the pyrmion multiplicity

to be very large and the energy to be thermalized by strong final state interactions.

The single particle momentum distribution of N body massless phase space for anni-

hilation of a particle anti-particle pair with total mass 2M is peaked at |p| = 2M/N and

is a Gaussian of the form

P ∝ e−ax2

,

in the rescaled momentum x, around the maximum, with a = N2 for large N .15 If we take

the estimate Λ3 ∼ 5TeV from our discussion of superpartner masses, and m1,3 ∼ 12 TeV to

assure the massive trianons are outside the range of chiral perturbation theory, then 2M ∼
72 TeV. This would give a distribution centered at 800 GeV, with an extremely narrow

width, for N ∼ 90, which is ∼ 18 times the pion multiplicity from proton anti-proton anni-

hilation. We would interpret the actual distributions seen in the balloon experiments as a

broadening of this peak toward the low momentum side by the effects of propagation of elec-

trons and positrons through the galactic medium. The high side of the experimental peak

should be identified with the position of the narrow peak in the primordial distribution.

The underlying SUP (3) gauge theory is supersymmetric, and has more degrees of

freedom than QCD, all of which can decay or annihilate to the pyrmion. Furthermore, in a

soliton model of the annihilation process the probability of a single particle with momentum

> Λ3 is exponentially suppressed since the particles come from a smooth coherent state.

Thus one would guess that the dynamics of the annihilation process forces a minimum of

10 pyrmions to be produced. Furthermore, since many of the final state pyrmions will be

produced in secondary decays of heavier pyrmesons, the multiplicity is almost certainly

higher than 10, since the dynamical momentum cutoff applies to the primaries. In other

words, the high multiplicity required to fit the data on balloon experiments does not seem

out of the question. Obviously, much more work on the dynamics of this strongly coupled

annihilation process, as well as a complete model of galactic propagation, will be necessary

in order to render a complete verdict on our model of the experiments.

Thus, very roughly we can produce a spectrum of electrons and positrons consistent

with the ATIC, PAMELA and PPB-BETS observations from a heavy pyrma-baryon dark

matter candidate decaying into ∼ 90 pyrmions, which themselves decay to e+e− pairs. To

be a good candidate for dark matter the pyrma-baryon abundance of the universe must be

non-thermal [1], and could come from a late decaying scalar with a reheat temperature in

the TeV range. The details of this, including the relation between the reheat temperature,

the low energy annihilation cross section, and the relic abundance, can be found in appendix

B. The low reheat temperature requires us to invent a sub-TeV mechanism for baryogenesis,

and the most attractive candidate is spontaneous baryogenesis at the electro-weak phase

transition, driven by a primordial asymmetry in one of the pyrma-baryon numbers [5].

Obviously a lot more work is needed to make these remarks into a robust theory, explaining

the data on dark matter.

We also note that, should the current observational indications of dark matter anni-

hilation signals prove to be explained by astrophysics [25], the Pyramid Scheme has dark

15We thank H. Haber for these results.
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matter scenarios in which there are no annihilation signals. This would be the case if the

dark matter were interpreted as a pyrma-baryon excess, as in [1]. The required primordial

asymmetry is roughly ǫPB =
Teq

mPB
∼ 10−12 TeV

mPB
. This is too small to give rise to an adequate

asymmetry in baryon number via spontaneous baryogenesis [5, 10]. We could invoke an

asymmetry of the spontaneously broken B2 quantum number to give spontaneous baryo-

genesis, but would then have to explain why the inflaton preferred to decay mostly into T2

rather than the other trianons. The Pyramid Scheme can accommodate a wide variety of

cosmological scenarios. We hope to explore some of them in future work.

5.1 The mass of the pyrmion

To calculate the mass of the pyrmion, we must understand the way in which the pyrma-

baryon number B2 is explicitly broken. The operators

B2 = det T2, B̄2 = det T̄2,

are invariant under SUP (3) and the standard model gauge group, and have discrete R-

charges satisfying

B2 + B̄2 = 3(2 − S) mod N.

Recall that N ≥ 5. We use the freedom to choose the individual pyrma-baryon and anti-

pyrma-baryon R-charges to impose

B2 = 2 − S, B̄2 = 4 − 2S mod N.

In that case, the dimension 5 operator
∫

d2θ SB2/MU , is the leading B2 violating operator,

which is invariant under all the symmetries of the model. The pyrmion mass will then be

of order

mb ∼
Λ

3/2
3

MU
1/2

∼ 2.5 MeV.

We have used the estimate Λ3 ∼ 5TeV from our discussion of superpartner masses. Thus,

the pyrmion can decay only into electrons, positrons, photons, neutrinos and gravitinos.

Note that this estimate also resolves the problem of pyrmion production in stars [6],

which could lead to cooling faster than what is observed. An MeV scale pyrmion could at

best be produced in supernova explosions.

6 Conclusions

We have sketched a new Pyramid Scheme for direct mediation of SUSY breaking. It

is based on the same fundamental dynamical assumption as the Pentagon model: the

existence of a SUSY and R-breaking meta-stable state of NF = NC SUSY QCD, but it

has the following advantages:

• It is based on trinification rather than unification in a simple group, and as a conse-

quence predicts completely perturbative coupling unification, with no Landau poles.

The full model can be associated with a simple quiver/moose diagram, which should

make its implementation in string theory straightforward.
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• There exist two unbroken baryon-number like symmetries in the hidden sector, which

enable us to construct a number of models of dark matter, along the lines of [1]. In

this paper we concentrated on a model in which the dark matter is produced non-

thermally, but without a pyrma-baryon asymmetry, in order to be able to model

dark matter annihilation signals. Given estimates of the confinement scale of the

SUP (3) gauge group from super-partner masses, the model produces annihilation

cross sections of (roughly) the right order of magnitude to explain ATIC, PAMELA

and PPB-BETS, and the dark matter annihilates predominantly into pyrmions, the

PNGB of the spontaneously broken pyrma-baryon number. The latter particle has a

mass in the MeV range and decays only into light leptons and photons. We argued

that a model of the annihilation process with a high pyrmion multiplicity ∼ 100 in

the final state could reproduce the bumps in the ATIC and PPB-BETS data.

• The dark matter scenario requires us to invoke a late decaying particle which re-

heats the universe to ∼ 1TeV, which implies that we must supplement it with a low

scale model for baryogenesis. The most economical scheme would be to postulate a

primordial asymmetry in one of the pyrma-baryon numbers (not the one associated

with the dark matter candidate). Standard model gauge boson exchange produces

current-current couplings between the pyrma-baryon currents and ordinary baryon

number, so that a pyrma-baryon asymmetry drives spontaneous baryogenesis [10] at

the electro-weak phase transition. Affleck-Dine baryogenesis is another reasonable

candidate mechanism.

• The pyrmion mass estimate makes it too heavy to be produced in ordinary stars,

avoiding the strong constraints of [6] on models of meta-stable SUSY breaking that

rely on the dynamics of NF ≥ NC SUSY QCD.

• The Pyramid Scheme has three pairs of chiral fields, the trianons T1,2,3 and T̄1,2,3,

which are charged under the standard model gauge group. Only one carries color.

In order to generate meta-stable SUSY breaking, the masses of two of the trianons

must be too large to be treated by chiral perturbation theory. If one of these heavy

trianons is the colorful one, then the gluino mass is naturally suppressed relative to

that of the charginos, and squark masses suppressed relative to those of leptons. This

removes the fine tuning problem of the vanilla gauge mediated spectrum. We note

that the gluino mass goes down rapidly with the mass of the heavy colored trianon,

so the latter probably cannot be so large as to be safely integrated out above the

confinement scale Λ3.

We want to emphasize that our estimates of the properties of the Pyramid Scheme are

rather rough and preliminary. In particular, the discussion of dark matter needs a lot of

work before one can make a reliable claim that it accounts for any existing dark matter

data. Furthermore, many of the important dynamical questions in the model, such as the

existence of the SUSY and R-violating vacuum state, and the generation of appropriate µ

and Bµ terms, depend on (currently) incalculable strong SUP (3) dynamics. The Pyramid
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Scheme has plausibility, but is not yet a fully going concern. Investors are warned that

past performance is no guarantee of future returns.
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A Cosmological SUSY breaking

In this appendix we explain the extra factor of 10, which appeared in our estimate of

m3/2 according to the hypothesis of CSB. The variables in the holographic theory of dS

space [26, 27] are N ×N + 1 matrices which are also spinors in 7 compactified dimensions.

We denote them by

(ψP )Ai , ([ψ†]Q)jB .

Their quantum algebra is

[

(ψP )Ai , ([ψ
†]Q)jB

]

+
= δj

i δ
A
BM

PQ.

P,Q are compact dimension spinor indices, andMPQ are “sums of wrapped brane charges”.

Their closed super-algebra with the ψ variables defines the compactification. We call it

the quantum algebra on a single pixel of the holographic screen of dS space, or the pixel

algebra for short. The holographic principle requires that the pixel superalgebra, for fixed

values of i, j, A,B has a finite dimensional unitary representation. If DP is the dimension

of the pixel algebra representation then lnDP is the entropy per pixel. The total entropy

of dS space, π(RMP )2 is then given by

π(RMP )2 = N(N + 1)lnDP .

In previous work, DP was set equal to 2 because the compactified dimensions were ignored.

We note in passing that this formalism implies that, in a finite radius dS space, com-

pactified dimensions have no moduli. The finite dimensional algebras and representations

are subject to the constraint that, as N → ∞ we must obtain (super)-gravitons in the

spectrum, following the outline in [26].16 The classification of such algebras has not yet

been attempted, but they must be discrete.

A hint at what is required comes from noting that Calabi-Yau manifolds are symplectic

and compact, so that geometric quantization gives a(n ambiguous) map from their function

algebras to finite dimensional matrix algebras. This can be easily extended to seven mani-

folds which are Calabi-Yau bundles over an interval (Horava-Witten compactifications) or

circle bundles over a CY3. The variables of the holographic theory will live in modules over

16In fact, in this paper, it was impossible to obtain gravitons (only massless chiral multiplets), because

there were no compactified dimensions.
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these finite dimensional algebras. From these correspondences one can see that DP will be

related exponentially to the volume of the internal space (in Planck units).17

What is lnDP in the real world ? In Kaluza-Klein compactification, the volume of the

internal space in higher dimensional Planck units (denoted by MPl), is related to the four

dimensional reduced Planck scale m4 by

(V/VPl) = (m4/MPl)
2.

Witten suggested [22] that MPl = 2 × 1016 GeV = MU , and used the large volume to

explain the discrepancy between the Planck and unification scales. Thus we expect

lnDP ∼ 104.

To proceed, we recall how [26] extracted particle states from the pixel algebra.

The point is simply that N × N + 1 matrices are precisely the spinor bundle over the

fuzzy 2-sphere. For finite N , we keep only a finite number, of order N2 spinor spherical

harmonics in the expansion of a section of this bundle. Ignoring the compact dimensions,

the pixel variables converge, as N → ∞, to ψ(Ω), an operator valued measure on the

spinor bundle. These are the operators describing a single massless chiral super-particle in

four dimensions, with fixed magnitude of the momentum and direction Ω. It is hoped that

the incorporation of compact dimensions will allow us to generalize the particle content

to include gravitons and gauge bosons.

In order to describe multi-particle states, as well as to obtain variable values of the

longitudinal momentum, we introduce block diagonal ψ matrices. The size of an M×M+1

block is interpreted as its momentum in units of 1/R. The usual permutation gauge

symmetry of the space of block diagonal matrices, is interpreted as particle statistics, and

the anti-commutation relations and spinor nature of the ψ operators enforces the right spin

statistics connection.

One must make a compromise between the number of particles allowed, and the number

of spherical harmonics allowed in the momentum space wave function of a given particle

(there must be many if it is to be localizable on the holographic screen18). The compromise

which leads to the maximal particle entropy is to take blocks of size M ∼ N1/2. This

picture of the typical particle momentum and multiplicity which maximizes the entropy in

dS space, can be derived in field theory by maximizing the entropy subject to the constraint

that no black holes with radius of order the cosmological horizon are formed.

The super-Poincaré algebra arises in this formalism only as N → ∞ and only for

localizable particle states. Corrections to the algebra should then scale like N−1/2. In

particular, the commutator of the Poincaré Hamiltonian, P0 and the supercharges Qa

should be of order N−1/2MPSa where Sa is an operator with matrix elements of order one.

It follows that the gravitino mass is given by a formula

m3/2 = N−1/2KMP ,

17This is just the statement that entropy is volume extensive in the internal dimensions. The holographic

reduction is just a feature of the non-compact dimensions.
18In experimental particle physics language this is localization in the detector.
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with K of order one. Our entropy formula gives

3

8

M4
P

Λ
= π(RMP )2 = N2lnDP ≈ 104N2.

Comparing these two formulae, we get the one used in the text by lumping a factor (8
3 )1/4

into K.

It should be noted that the Lorentz group arises in this formalism as the conformal

group of the sphere. The formalism is exactly rotation invariant for any N and conformal

transformations corresponding to boosts of moderate rapidity should not be affected much

by restricting the space of functions on the sphere to the first 1030 spherical harmonics.

B Non-thermal dark matter

This appendix recalls the non-thermal dark matter production scenario described in [1].

We assume that a particle X with mX ≫ mB decays, with a reheat temperature TRH < Λ3.

This produces an initial abundance of heavy pyrma-baryons

Y0 = 10−2TRH

mB
.

Y0 is, as usual the number density to entropy density ratio. The first factor in this equation

is simply the branching ratio that would appear for a massless pyrma-baryon, while the

second suppression factor takes into account the fact that the mass is above the typical

energy of decay products after thermalization. The decay is relatively quick, so we can

neglect annihilation of pyrma-baryons during the decay process.

Below TRH the pyrma-baryon abundance satisfies a Boltzmann equation driven only

by annihilation. Processes which create more pyrma-baryons have already fallen out of

equilibrium.

We have
dY

dx
= −k Y

2

x5/2
,

where x = mB/T , and

k =
2πmBmPσ0g∗s

75g
1/2
∗

≈ (1.4 × 1015 TeV)mBσ0.

g∗ is the number of massless degrees of freedom into which the pyrma-baryons annihi-

late and g∗s the number that contribute to the entropy. We have, in the last expression

for k, approximated both of these by an average value of 50 and written all remaining

dimensionful quantities in TeV units.

The solution for the present day abundance is

Y −1
f = Y −1

i +
2k

3
(x

−3/2
i − x

−3/2
f ).

The last term is negligible, and so is the first if TRH is high enough for nucleosynthesis to

occur in a normal fashion. Thus

Yf =
10−15m

1/2
B T

−3/2
RH σ−1

0

TeV
.
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The observed dark matter density is obtained if

Yf
mB
TeV

= 4.4 × 10−13,

so we must have

Λ3 > TRH = 0.017
mB

[σ0 (TeV)2]2/3
≈ 0.15 mB/A

2/3.

In the last approximate equality we have taken Λ3 ∼ 5 TeV and used A as the value of

σ0Λ
2
3. This can be satisfied for heavy pyrma-baryon masses less than

mB < 6.7A2/3Λ3.

Recalling that mB3
cannot be much bigger than 3Λ3 (in order to satisfy the bounds on the

gluino mass) and that A ∼ 1, we are able to fit the observed dark matter abundance, the

gross features of the dark matter signals in ATIC, PAMELA and PPB-BETS, as well as

supersymmetric phenomenology. The parameters of our model are tightly constrained by

all of this data.

C Some computations

In this appendix we present some computations related to the meta-stable state. Below

the scale Λ3, the relevant superpotential is given by

W =
∑

i=1,3

(mi + yiS)TiT̄i + (m2 + y2S)Λ3 trM + gµSHuHd +
gT

3
S3 + · · ·

where the pyrmeson T2T̄2 = Λ3M satisfies the usual quantum moduli space constraint

detM − Λ3PP̃ = Λ3
3 and the heavy trianons Ti=1,3 and T̄i=1,3 have to be integrated out.

Parametrizing the pyrmeson and the pyrma-baryons as

M = Zaλ
a, P = iΛ3e

(q+p)/Λ3 , P̃ = iΛ3e
(q−p)/Λ3

where Z0 ≡ Z, λ0 =
√

2
3 I and λa=1,...,8 are Gell-Mann matrices, the quantum moduli space

constraint can be satisfied for any Za and p by fixing q. If q 6= −∞ then p is the NGB of

the broken U(1)B2
. The superpotential in terms of the unconstrained fields is simply

W =
X

Λ3

[

(

2

3

)
3
2

Z3 + Λ3
3e

2q/Λ3 − Λ3
3

]

+
√

6Λ3(m2 + y2S)Z + gµSHuHd +
gT

3
S3 + . . .
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where the heavy trianons have been integrated out and Za6=0 = 0 was assumed. The

F-terms are

−F †
S =

√
6y2Λ3Z + gµHuHd + gTS

2

−F †
Hu

= gµSHd

−F †
Hd

= gµSHu

−F †
Z = 2

√

2

3

XZ2

Λ3
+

√
6Λ3(m2 + y2S)

−F †
q = 2Λ3Xe

2q/Λ3

−F †
X =

(

2

3

)
3
2 Z3

Λ3
+ Λ2

3e
2q/Λ3 − Λ2

3

and there is an extra SUSY vacuum at SSUSY = −m2

y2
and ZSUSY = − gT m2

2√
6y3

2
Λ3

with q

satisfying the quantum moduli space constraint and all other VEVs to zero. The Higgs

sector scalar potential has three contributions,

V = VF−terms + V1−loop + VD−terms

where

VF−terms = |
√

6y2Λ3Z + gµHuHd + gTS
2|2 + |gµS|2(|Hu|2 + |Hd|2)

+((∂2K)−1
Z†Z

)6|Λ3|2|m2 + y2S|2

V1−loop =
9

32π2

∑

i=1,3

∑

σ=±1

[

m4
B log

m2
B

Λ2
−m4

F log
m2

F

Λ2

]

VD−terms =
1

8
(g2

1 + g2
2)(|Hu|2 − |Hd|2)2 +

1

2
g2
2 |H+

u H
0†
d +H0

uH
−†
d |2

and the fermionic and bosonic masses for the heavy trianons are given by

m2
F = |mi + yiS|2

m2
B = |mi + yiS|2 + σ|yi(

√
6y2Λ3Z + gµHuHd + gTS

2)|.

There are critical points of the potential with H+
u = H−

d = 0. Assuming this, the potential

becomes invariant under H0
u ↔ H0

d and thus there are critical points with H0
u = H0

d .

At critical points like these, the D-term contribution vanishes and the potential simplifies

greatly. The existence of a SUSY violating minimum is encoded in the strong dynamics of

the SUP (3) gauge group and is therefore difficult to determine.
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